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Sodium polyphosphate and polyethylenimine enhance the antimicrobial
activities of plant essential oils

Abstract
Plant extracts have been used for millennia for treatment of disease, with much recent interest focusing on the
antimicrobial activities of plant essential oils (EOs). Although EOs are active against common microbial
pathogens, their effective use as topical, environmental, or food antimicrobials will require EO-based
formulations with enhanced antimicrobial activities. In this study, two polyionic compounds, sodium
polyphosphate (polyP, a polyanion) and polyethylenimine (PEI, a polycation), were evaluated for their
abilities to enhance the antimicrobial activities of six EOs against the human pathogens Escherichia coli
O157:H7, Salmonella enterica subsp. enterica ser. Minnesota, Pseudomonas aeruginosa, Listeria
monocytogenes, Staphylococcus aureus, and Candida albicans. EOs tested were cinnamon, clove, regular and
redistilled oregano, and two types of thyme oil. EOs were examined via disk diffusion and broth
microdilution, either alone or in the presence of subinhibitory levels of polyP or PEI. Both polyP and PEI
were found to be effective enhancers of EO activity against all strains examined, and calculation of fractional
inhibitory indices for select EO/organism pairings demonstrated that true synergy was possible with this en‐
hancement approach. Experiments with a deep-rough strain of S. Minnesota probed the role of the outer
membrane in both intrinsic resistance to EOs and enhancement by polyions. The use of polyP and PEI for
boosting the antimicrobial activities of EOs may eventually facilitate the development of more effective EO-
based antimicrobial treatments for use in applications such as wound treatment, surface disinfection, or as
generally recognized as safe antimicrobials for use in foods or on food contact surfaces.
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ABSTRACT
Plant extracts have been used for millennia for treatment of
disease, withmuch recent interest focusing on the antimicrobial
activities of plant essential oils (EOs). Although EOs are active
against common microbial pathogens, their effective use as
topical, environmental, or food antimicrobials will require
EO-based formulations with enhanced antimicrobial activities.
In this study, two polyionic compounds, sodium polyphosphate
(polyP, a polyanion) and polyethylenimine (PEI, a polycation),
were evaluated for their abilities to enhance the antimicrobial
activities of six EOs against the human pathogens Escherichia
coli O157:H7, Salmonella enterica subsp. enterica ser. Minnesota,
Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus
aureus, and Candida albicans. EOs tested were cinnamon, clove,
regular and redistilled oregano, and two types of thyme oil. EOs
were examined via disk diffusion and broth microdilution,
either alone or in the presence of subinhibitory levels of polyP
or PEI. Both polyP and PEI were found to be effective enhancers
of EO activity against all strains examined, and calculation
of fractional inhibitory indices for select EO/organism pairings
demonstrated that true synergy was possible with this en‐
hancement approach. Experiments with a deep-rough strain of
S. Minnesota probed the role of the outer membrane in both
intrinsic resistance to EOs and enhancement by polyions. The
use of polyP and PEI for boosting the antimicrobial activities of
EOs may eventually facilitate the development of more effective
EO-based antimicrobial treatments for use in applications
such as wound treatment, surface disinfection, or as generally
recognized as safe antimicrobials for use in foods or on food
contact surfaces.

INTRODUCTION
There is substantial consumer demand for and industrial

interest in development of “natural” antimicrobials for use in

disinfection and cleaning of food contact surfaces, for treatment
of foods themselves (food-grade antimicrobial fruit or veget-
able washes, for example), or for use as topical antimicrobials,
as alternatives to antibiotics. Plant essential oils (EOs) are a
promising botanical source for such natural antimicrobials. The
term “essential oil” is a collective descriptor for the fragrant,
oily liquids obtained from the leaves, flowers, bark, bulbs, roots,
or other plant components through extraction methods such
as steam distillation, physical expression, supercritical fluid
extraction, or enfleurage (extraction into solid, odorless fat) [1–4].
EOs have long standing in human culture as flavorant and
aroma compounds and have also been valued for their phar-
macological properties as analgesics/local anesthetics, or
for their anti-inflammatory or spasmolytic properties [1,2].
Although formal development of EOs as antibacterials began in
the late 19th century [2], their widespread use in this applica-
tion was likely eclipsed by the ready availability of synthetic
antimicrobials such as dyes, and later in the next century, by the
discovery of antibiotics. Today, factors such as the widespread
development of resistance to antibiotics and increasing
consumer demands for “natural” or “green” alternatives to
traditional food preservatives or disinfectants have driven a
renewed interest in the use of EOs as antimicrobials. Advan-
tages of EOs include the fact that many have generally
recognized as safe (GRAS) status and are already used widely
in foods, cosmetics, or in personal care products as flavorants,
aroma compounds, or functional ingredients [2,4]. A key
drawback is that although some EOs have relatively wide
antimicrobial spectra [4], they typically demonstrate high
minimum inhibitory concentrations (MICs) when added to
complex systems. For example, in foods, the amount of EO
needed to inhibit pathogensmay be asmuch as 100-fold greater
than the amount needed to inhibit the same pathogens in
microbiological media [2]. Given the intense flavor and aroma
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profiles of most EOs, such high levels may be organoleptically
unacceptable, limiting the use of these antimicrobials in food-
related applications [4–6]. In topical applications, the use of
certain concentrated EOs or EO-containing products has been
linked to contact dermatitis and even gynecomastia in pre-
pubescent boys [7,8]. Therefore, methods for enhancing the
antimicrobial activities of EOs may enable the practical use
of these otherwise promising natural compounds in food,
environmental, or topical medical applications by achieving
equivalent (or better) antimicrobial efficacy, but at lower EO
concentrations [4,6].

A critical factor affecting the efficacy of hydrophobic com-
pounds (or mixtures of hydrophobic compounds, such as found
in EOs) against gram-negative bacteria is the permeability
barrier posed by the outer membrane (OM) [9]. The hydro-
philic, quasicrystalline “tiled roof” surface of the intact OM
effectively limits the entry of hydrophobic EO components into
the cell [9,10]. A number of strategies have been devised to
address the permeability barrier posed by the OM, with an aim
toward improving the efficacy of antibiotics [6,9–12], biocides
[13], or individual EO components such as thymol and carvacrol
[6] against gram-negative bacteria. Typically, these strategies
involve co-treatment of target bacteria with polycationic
or polyanionic molecules including polyphosphates [14], poly-
ethylenimine (PEI) [10–13], or metal chelators such as ethyle-
nediaminetetraacetic acid (EDTA) [6,11,13,15] and organic
acids [5,6]. In these applications, polyphosphates, EDTA, and
organic acids are thought to disrupt the integrity of the OM by
chelating the divalent cations involved in electrostatic linkage,
or “bridging”, of adjacent LPS molecules [6,11,13,15,16], and
polycationic molecules such as PEI and chitosan are thought to
interact with Lipopolysaccharide (LPS, itself an anion) in the
OM to introduce disorder in LPS–LPS interactions, interfering
with the OM’s barrier function [9–12]. An excellent review of the
diversity of (mostly cationic) molecules known to be capable of
permeabilizing the gram-negative OM is provided by Vaara [9].

Although much work has focused on using polyionic com‐
pounds for enhancing antimicrobial activity against gram-negative
bacteria, little is known about how these compounds may
affect uptake of antimicrobials by other cell types, such as
gram-positive bacteria or yeasts. In approaching this study, we
reasoned that because polyionic permeabilizers such as polyP
and PEI have been previously shown to facilitate the uptake of
hydrophobic antibiotics by gram-negative bacteria, they may
also serve as effective co-incubants for promoting the uptake
of other hydrophobic compounds or mixtures, namely EOs.
Therefore, we sought to characterize the efficacy of polyP and
PEI as promoters of EO uptake in gram-negative bacteria using
six commonly available EOs. Once we established that polyP
and PEI were capable of enhancing EO activity against select
gram-negative bacteria (Escherichia coli O157:H7, Salmonella
enterica subsp. enterica ser. Minnesota, Pseudomonas aerugi-
nosa), we sought to extend these effects to other cell types,
including gram-positive bacteria (Listeria monocytogenes,

Staphylococcus aureus) and a pathogenic yeast (Candida albicans).
The role of the OM in susceptibility of gram-negative bacteria to
EOs and to EO/polyion combinations was also examined using
a “deep-rough” mutant of S. Minnesota. Finally, we sought to
characterize whether the EO-enhancing activities of polyP
and PEI were truly synergistic, versus simply additive, by
measuring fractional inhibitory concentrations (FICs) and
calculating FIC indices for select pathogen-oil pairings.

MATERIALS AND METHODS
Chemicals and essential oils

BEKAPLUS FS, a food grade sodium polyphosphate (polyP) salt,
was from BK Giulini, (Simi Valley, CA). Stock solutions of
polyP (5% w/v, final pH of 6.8) were prepared in sterile water
and used the same day. Polyethylenimine (PEI; branched, avg.
MW 25,000) was from Sigma-Aldrich (St. Louis, MO). Stock
solutions of PEI (2.5 mg/ml, final pH of ~9.2) were prepared in
sterile water. The following EOs were sourced from Van Beek
Natural Science (Orange City, IA): cinnamon, clove, oregano,
redistilled oregano, spike thyme, and white thyme. According
to certificates of analysis provided by the vendor, the oils
contained the following levels of active compounds: cinnamon
oil, 70.42% cinnamaldehyde; clove oil, 87.6% eugenol; oregano
oil, 67.4% carvacrol, 3.8% thymol; redistilled oregano oil,
96.4% carvacrol, 2.7% thymol; spike thyme oil, 71.01%
carvacrol; white thyme oil, 50.19% thymol. Neat oils were
added directly to growth media and mixed thoroughly prior
to use.

Microbial strains and culture conditions

E. coli O157:H7 ATCC 35150, S. enterica subsp. enterica ser.
Minnesota SLH154 (wild-type clinical isolate, Wisconsin State
Lab of Hygiene), S. Minnesota R613 (Re chemotype “deep-
rough” mutant, Salmonella Genetic Stock Centre, Calgary,
Alberta, CA), P. aeruginosa ATCC 27853, S. aureus ATCC
29523, and L. monocytogenes F6854 were grown at 30°C
in cation-adjusted Mueller Hinton broth (CAMHB) (Becton
Dickinson and Company, Franklin Lakes, NJ) as described
in the Clinical and Laboratory Standards Institute (CLSI)
document M7-A7 [17]. C. albicans ATCC 90028 was grown at
35°C in RPMI 1640 broth (Sigma-Aldrich) as described in CLSI
document M27-A2 [18].

Disk diffusion

The baseline antimicrobial activities of the six EOs were
determined using a standard disk diffusion assay, as described
in CLSI document M2-A9 [19]. For evaluation of EO activity in
the presence of polyionic enhancers, an agar overlay-based
modification of this assay was used, with enhancers and test
inocula commingled in the overlay [20]. Briefly, cells were
grown in CAMHB for 24 h at 30°C and diluted to a working
concentration of ~107 CFU/ml in phosphate buffered saline.
An aliquot of this cell suspension was added to a Mueller
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Hinton agar overlay (0.7% agar) tempered to 50°C, yielding a
final inoculum of ~106 CFU/ml. This seeded overlay mixture
was immediately poured over gelled Mueller Hinton agar
(1.5% agar) in small petri dishes (60 mm diam., with the
exception of the 100 mm diameter plate shown in Figure 7)
and left to solidify. For treatments containing polyP or PEI,
aliquots of polyion working stocks were added to the
tempered overlays before pouring to yield final enhancer
concentrations of 1% (polyP) or 50 mg/ml (PEI). Sterile paper
disks (BBL, Becton Dickson and Company, Franklin Lakes, NJ)
were saturated with 15 ml portions of each EO to be tested
and placed aseptically on the gelled agar overlays, and plates
were incubated at 30°C for 24 h. Zones of inhibition (ZOI,
diameter reported in mm) were measured from the bottom of
each plate after incubation. Within each experiment, all
treatments were performed in duplicate, and all experiments
were performed in triplicate. Zones reported represent the
averages of these replicate measurements. Statistical analysis
was performed using SAS software (v 9.1, SAS Institute Inc.,
Cary, NC). Statistical significance in ZOI size between treat-
ments was tested using Tukey’s test for multiple comparisons
(p < 0.05).

Minimum inhibitory concentration

To obtain MICs for subsequent calculation of FICs, the anti-
microbial activities of two EOs (cinnamon and redistilled
oregano oils) were tested via broth microdilution assay against
a representative gram-negative bacterium (E. coli O157:H7),
a gram-positive bacterium (L. monocytogenes), and a yeast
(C. albicans) using a Bioscreen C microbial growth analyzer
(Labsystems, Helsinki, Finland). Briefly, stock solutions of EOs
were prepared by direct addition of oils to CAMHB, with
thorough vortexing to ensure adequate mixing. Serial twofold
dilutions of EO-containing CAMHB were made into plain
CAMHB as described previously [21], yielding a series of wells
containing EO levels ranging from 1% to 0.0039% EO (v/v).
Fresh CAMBHwas added to bring the final volume of all wells to
200 ml, and controls (growth media without added EOs) were
included in every experiment. For MIC determinations of
bacteria in the presence of polyionic enhancers, appropriate
aliquots of polyP or PEI stocks were added prior to bringing
wells up to volume with fresh CAMBH, yielding final concentra-
tions of polyP and PEI of 1% and 50 mg/ml, respectively. Final
pH values for CAMBH to which polyP or PEI had been added
ranged between 7.1 and 7.3 (close to the manufacturer’s
specifications of 7.3 ± 0.1). Preliminary work demonstrated
that C. albicans was inhibited by 1% polyP alone. Therefore, a
subinhibitory level of 0.25%was used to determine the MICs of
EO/enhancer combinations for this organism. Additionally, in
this liquid system, PEI was found to be inhibitory to C. albicans
at all levels tested, precluding testing of PEI-mediated MIC
reduction for this organism. For MIC determinations (and also
for FIC determinations, below) all treatments within each
experiment, and all experiments, were performed in triplicate.

Microbial cells were cultured and further diluted in fresh
media, then added to a final concentration of 105 cells per
well. Plates were incubated in the Bioscreen for 24 h at 30°C
(35°C for C. albicans) and the instrument was programmed to
measure optical density at 600 nm every 15 min, with shaking
for 30 s prior to each reading to ensure adequate suspension of
cells. The MIC was defined as the lowest EO concentration that
completely inhibited microbial growth (OD increase ≤ 0.05)
after 24 h incubation [22].

Fractional inhibitory concentration

For assays involving combinations of EOs and polyionic
enhancers, FICs were determined as a means to detect and
quantify formal synergy between these components, versus
simple additive effects. To do this, MICs for EOs and polyionic
enhancers were determined both individually and in combina-
tion, using the methods for MIC determination described above,
and FIC indices were calculated according to the method of
Pankey and Ashkraft [23], using the following formulas:

FIC (Essential oil) = (MIC combination/MIC oil alone)
FIC (Polyion) = (MIC combination/MIC polyion alone)
∑FIC = FIC (Essential oil) + FIC (Polyion)

Interactions with ∑FIC ≤ 0.5 were classified as “synergistic,”
those with ∑FIC ≥ 4.0 were classified as “antagonistic,”
and interactions having ∑FIC between 0.5 and 4.0 were
classified as “indifferent” [23]. Because E. coli and L. mono-
cytogenes were not inhibited by polyP alone, even at very high
concentrations, the highest level of polyP tested (10%) was
used to calculate FIC values for these organisms.

Results
Disk diffusion

All EOs were inhibitory alone to the organisms tested, pro‐
ducing modest ZOIs of 10–17mm for L. monocytogenes, 9–20mm
for P. aeruginosa, 14–26 mm for wild-type S. Minnesota,
and 15–25 mm for E. coli. Of all wild-type strains, the largest
ZOIs for oils alone were measured for S. aureus, with ZOIs
of 18–40 mm. However, the “deep-rough” (Re chemotype)
S. Minnesota was the most intrinsically susceptible organism
to EOs alone, with ZOIs of 26–45 mm, roughly twice the size
as those measured for wild-type (“smooth”) S. Minnesota.
(Figures 1–6). For all organisms tested, clove was the least
active EO. Combination of EOs with subinhibitory concentra-
tions of polyP (1%) or PEI (50 mg/ml) significantly (p < 0.05)
increased zone sizes for all bacteria tested, indicating at least an
additive effect for these enhancers. Exceptions include the non-
significant increases in ZOI seen for the PEI/clove combination
with P. aeruginosa, wild-type S. Minnesota and S. aureus, or
the PEI/cinnamon combination with wild-type S. Minnesota
(Figures 2, 3, and 5).

Remarkably, we found that co-application of polyP or PEI
further enhanced the activities of EOs against the intrinsically
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susceptible “deep-rough” S. Minnesota strain. Table 1 sum-

marizes the increases in ZOIs seen for polyP or PEI for the

six bacteria tested. These data are reported as the range

of ZOI increase (in mm) seen across all pathogen/polyion/EO

pairings. For gram-negative bacteria, the smallest overall

increases were noted for P. aeruginosa and wild-type

S. Minnesota treated with PEI. The activities of EOs against

S. aureus, the most intrinsically susceptible wild-type organ-

ism, were also only minimally enhanced by either polyion.

These data highlight that although the activities of all EOs

could be enhanced by polyP and PEI, the degree of enhancement

varied according to the pathogen/polyion/EO pairing tested.

Although PEI was inhibitory to C. albicans at all concentrations

used in liquid media (see section Minimum inhibitory con‐
centration), we were able to titrate the level of PEI to a

subinhibitory, yet EO-enhancing level of 5 mg/ml when incor-

porated into the agar overlays used in disk diffusion experi-

ments. Treatment of C. albicans with either 1% polyP or

5 mg/ml PEI led to larger ZOIs for all oils. However, ZOIs for

both EO-only controls and polyion-treated C. albicans were

not always measurable, as their edges were often diffuse,

without a clear line of demarcation. An exception to this

observation was found with cinnamon oil, which did yield
crisp, measurable zones with either the oil alone or the oil
combined with 0.25% polyP or 5 mg/ml PEI (Figure 7).

Apart from leading to increases in zone size for the various oils
used, we observed that treatment of P. aeruginosa with 1%
polyP also caused the bacterial lawn to change in color from a
greenish-blue hue to a white or cream color (data not shown).
This color change did not occur in lawns treated with PEI. The
potential significance of this observation is discussed below.

Minimum inhibitory concentration

A broth microdilution assay was used to determine the
MICs of EOs alone and in the presence of polyionic enhancers.
MIC values of the enhancers alone were also determined
for use in calculating FIC indices for EO/polyion combinations.
Cinnamon and redistilled oregano oils were chosen as repres-
entative oils for MIC and FIC determination on the basis of their
disk diffusion activities and on their chemical compositions,
with cinnamaldehyde and carvacrol being the main constitu-
ents for cinnamon and oregano oils, respectively (see “Materials
and Methods”). MIC results paralleled those obtained for disk
diffusion, with L. monocytogenes showing a higher intrinsic

Figure 1. Zones of inhibition (mm) for six essential oils against L. monocytogenes F6854, alone and in the presence of polyP (1%) or

PEI (50 µg/ml). For each essential oil, treatments having the same letter are not significantly different (p < 0.05).
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resistance to EO activity than E. coli, but also showing in‐
creased sensitization to EOs in the presence of both enhancers
(Figures 1 and 3; Tables 2 and 3).

Specifically, L. monocytogenes showed a threefold reduction
in MIC for both cinnamon and redistilled oregano oils in
the presence of polyP, although MICs for E. coli and C. albicans
exposed to this sensitizer were reduced by only twofold
(cinnamon) and onefold (redistilled oregano) (Table 2). In the
presence of PEI, the MIC for redistilled oregano oil against
L. monocytogenes was reduced fourfold. For oils tested alone,
without enhancers, cinnamon oil was found to be the most
effective by broth microdilution, with C. albicans being the
most intrinsically susceptible organism (Table 2). As noted
in Materials and Methods, preliminary experiments revealed
that C. albicans was fully inhibited by 1% polyP and by all
levels of PEI (as low as 0.39 mg/ml) tested in this liquid
system. Therefore, for C. albicans, a non-inhibitory level of
0.25% polyP was used and MIC/FIC determinations of EO/PEI
combinations were not determined (Table 3).

Although our results clearly showed that polyP and PEI were
able to enhance the antimicrobial activities of the EOs tested,
FIC indices were calculated to formally detect and characterize
EO/enhancer synergies. With the exception of L. monocytogenes

combined with PEI, all enhancer combinations with cinnamon
oil showed synergistic interactions, with FIC indices ≤ 0.5.
The lowest FIC indices (highest levels of synergy) were found
for L. monocytogenes treated with combinations of polyP
and cinnamon or redistilled oregano oils. Both E. coli and
L. monocytogenes were able to grow at levels of polyP as high
as 10% (the highest level tested). FIC values were therefore
calculated using this level as input. No antagonistic interactions
were found with any of the combinations tested, indicating at
least additive interactions between these polyionic enhancers
and the EOs tested.

Discussion
EOs are complex mixtures of natural molecules known to have
various biological activities individually as herbivore attrac-
tants or repellants; as insect attractants, mating hormones, or
antifeedants; or as components of plant defense systems active
against bacteria, fungi, and viruses [1,20,24]. Recent consumer
trends toward “natural” products, together with the widespread
incidence of resistance to traditional antibiotics have driven a
strong interest in alternatives to traditional chemical food
preservatives, cleaning agents, or antibiotics [2,20]. Although
EOs have generated interest as potential food preservatives,

Figure 2. Zones of inhibition (mm) for six essential oils against P. aeruginosa ATCC 27853, alone and in the presence of polyP (1%) or

PEI (50 µg/ml). For each essential oil, treatments having the same letter are not significantly different (p < 0.05).
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disinfectants, or topical antimicrobials, their practical use can

be limited in these roles by their strong aromas, flavors, or other

undesirable attributes (as skin irritants, for example). Further,

their effective use in complex systems such as foods typically

requires their addition at much higher levels (10–100-fold
greater) than is required for obtaining the same antimicrobial

effects inmodel media systems [2]. Our study provides an initial

in vitro assessment of these two polyionic compounds as

enhancers of EO activity against gram-negative bacteria, gram-

positive bacteria, and fungi. Although we have not yet studied

the practical application of these basic enhancement phenom-

ena to specific food, environmental, or clinical systems, we

believe that methods such as ours for potentiating or enhancing

the existing antimicrobial effects of EOs may ultimately facilitate

use of EOs as realistic alternatives to existing chemical

preservatives, disinfectants, or antibiotics. Potentially, such

methods could either be used to boost EO efficacy at current

usage levels, or enable formulation of effective EO-based anti-

microbials at substantially lower EO levels, thereby minimizing

the undesirable attributes of such systems.

In this study, we have demonstrated that the polyionic

compounds polyP (a polyanion) and PEI (a polycation) can

be used as effective modulators of EO antimicrobial activity,

not only against gram-negative bacteria (E. coli O157:H7,

P. aeruginosa, S. Minnesota), but also against other cell types,

including gram-positive bacteria (L. monocytogenes, S. aureus)

and a pathogenic yeast (C. albicans). We have shown that polyP

and PEI are able to enhance the activities of all oils tested and

that certain combinations, such as cinnamon oil and polyP

against E. coli, L. monocytogenes, and C. albicans, are measurably

synergistic, as determined using FIC analyses. Intriguing new

data have also been collected on both the intrinsic susceptibility

of an LPS-deficient “deep-rough”mutant of S.Minnesota to EOs,

as well as the additional enhancing effects of polyP or PEI on

the antimicrobial effects of EOs against this strain. Collectively,

our results suggest excellent potential for polyP and PEI in the

formulation of more effective EO-based treatments for use as

alternative antimicrobials.

Both polethylenimine (also spelled “polyethyleneimine” in

some publications) and polyP are multifunctional molecules,

with a diversity of applications in industry as functional

ingredients. PEI is a synthetic, cationic polymer whose positive

charge stems from the presence of primary, secondary, and

tertiary amino groups [10,13]. PEI is available in a variety of

Figure 3. Zones of inhibition (mm) for six essential oils against S. enterica subsp. enterica ser. Minnesota SLH154 (“smooth”/wild-type
clinical isolate), alone and in the presence of polyP (1%) or PEI (50 µg/ml). For each essential oil, treatments having the same letter

are not significantly different (p < 0.05).
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forms, including straight-chain and branched forms and it has
been used in applications as varied as a DNA carrier and delivery
vector for gene therapy applications, as a flocculant in paper
production and waste water treatment and as an ingredient in the
manufacture of cosmetic or personal care products, including
shampoos [11,25]. The U.S. Code of Federal Regulations also
allows PEI as a secondary direct food additive in applications ran‐
ging from fixation and immobilization of enzymes for the pro‐
duction of beer, and as an adhesive in food packaging materials.

Polyphosphates are highly anionic condensates of phosphoric
acids, and like PEI, are used in a diversity of applications,
including multiple food-based applications as acidulants or
alkalizers; as a source of dietary phosphorus; as emulsifiers,
stabilizers, or dispersants; as buffers, thickeners, or gelling
agents; as leavening or anti-caking agents; and, due to their
metal chelating action, as color protectants and inhibitors
of lipid oxidation or enzymatic browning [15,21,26]. Polypho-
sphates are routinely used across many food categories in‐
cluding in process cheese, dairy products, meats, poultry,
seafood, vegetables, beverages, and pet foods [21]. Non-food
applications of polyphosphates include their use in personal
care products, and as “eco-friendly” fire retardants used to fight
forest fires. In nature, polyP is found in all cell types (bacterial,

archaeal and fungal, protozoan, plant and animal) where it acts
variously as a buffering agent, an internal reservoir for
inorganic phosphate, a substitute for ATP in kinase reactions,
an elicitor of natural competence for bacterial transformation, a
structural component in the capsular material of Neisseria spp.
and in the processing and degradation of mRNA [27].

Previous studies have demonstrated that PEI is an effective
permeabilizer of gram-negative bacteria, facilitating the
uptake or action of various compounds, including antibiotics,
detergents, or biocides [10,11,13]. One study also showed
similar permeabilizing effects for PEI against a gram-positive
bacterium, Mycobacterium vaccae [28]. However, the physi-
ology of Mycobacterium spp. is not typical of other gram-
positive bacteria, as they possess a lipid bilayer OM that is more
akin in structure and barrier function to that of the gram-
negative OM [29]. Although not discussed extensively in light
of its role as an enhancer of gram-negative OMpermeability, PEI
is also capable of chelating divalent metals, including Cu2+ and
Fe2+, and has been used in this capacity to protect enzymes
against metal-catalyzed oxidation [30]. Although the antibiotic-
or biocide-sensitizing properties of PEI have been examined
thoroughly for gram-negative bacteria, it was not clear what
uptake enhancement activities, if any, PEI might have for

Figure 4. Zones of inhibition (mm) for six essential oils against E. coli O157:H7 ATCC 35150, alone and in the presence of polyP (1%) or

PEI (50 µg/ml). For each essential oil, treatments having the same letter are not significantly different (p < 0.05).
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exogenous compounds such as EOs when used against

gram-positive bacteria, or yeasts. Likewise, although the OM-

permeabilizing effects of polyP are well known [15,16], its

potential for use as an enhancer of compounds other than

antibiotics and against organisms other than gram-negative

bacteria was not clear prior to our study.

The physiological responses of gram-positive bacteria to chal-

lenge with polyP alone have been well characterized [31,32].

For Bacillus cereus, effects of lower levels of polyP (0.05%)

included inhibition of growth, andmorphological changes, includ-

ing filamentation and interference with septum formation [32].

At higher concentrations, polyP caused lysis of vegetative

cells and was also sporicidal [32]. With S. aureus, 0.1% polyP

caused leakage of intracellular contents and cell lysis [31].

These effects have been largely attributed to the ability of polyP

to sequester structurally important divalent cations from

gram-positive bacteria, a notion supported by the fact that the

inhibitory effects of polyP can be avoided or reversed through

the addition of divalent metal cations, such as Mg2+ and Ca2+

[15,31–33]. It is important to note that in this work, we used

CAMHB, a medium that is supplemented with both calcium

and magnesium at levels of 20–25 mg/L and 10–12.5 mg/L,

respectively (per manufacturer’s product data sheet). There-

fore, even greater antimicrobial effects of polyP/EO combina-

tions may be possible when these are used in cation-deficient

systems. As described in “Results” above, we noted a color

change (from a greenish-blue hue, to white or cream) in P.

aeruginosa lawns grown on plates containing polyP. The same

effect was not observed on plates containing PEI. P. aeruginosa

is well characterized as producing colored metabolites, includ-

ing pyocyanin and other phenazine compounds, which are

thought to play a role in infection [34]. In addition to growth on

specific carbon sources or the presence of certain amino acids

or Krebs cycle metabolites, conditions known to stimulate

production of pyocyanin and other phenazines include phos-

phate deficiency or the presence of magnesium ions [34].

Therefore, it is reasonable to expect that treatment of P.

aeruginosa with high levels of cation-chelating polyphosphate

could modulate or suppress the production of these colored

phenazine metabolites. Given the assumed role of these

metabolites as infection-associated virulence factors, treatment

of P. aeruginosa with polyP could have additional benefits in

clinical applications beyond simply increasing susceptibility to

EOs and other hydrophobic antimicrobials.

Figure 5. Zones of inhibition (mm) for six essential oils against S. aureus ATCC 29523, alone and in the presence of polyP (1%) or PEI

(50 µg/ml). For each essential oil, treatments having the same letter are not significantly different (p < 0.05).
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Previous studies have shown that gram-positive bacteria are

typically more sensitive to EOs than are gram-negative bacteria,

presumably due to the presence of the OM [2]. It is known that

an intact gram-negative OM represents an effective barrier

against hydrophobic antimicrobials and that the chelating

activities of polyP and PEI weaken the OM through removal of

the divalent cations that link adjacent molecules of LPS via

electrostatic bridging [9,13]. In light of both the known intrinsic
resistance of gram-negatives to EOs and our results that polyP
and PEI can enhance EO activity against these bacteria, we
hypothesized that a gram-negative bacterium without an intact
OM should have increased susceptibility to EOs alone. To probe
this further, we examined the activities of EOs against a “deep-
rough” (Re chemotype) mutant of S. Minnesota, both with and
without the addition of polyP or PEI. Re chemotype mutants,
such as the S. Minnesota strain used in our work, possess a
severely truncated LPS containing only the 3-deoxy-D-manno-
octulosonate residues of the core oligosaccharide attached to
lipid A. These strains are unable to incorporate as many
proteins in the OM as wild-type cells. These “voids” are
subsequently filled with phospholipid patches, which act as
channels for diffusion of hydrophobic compounds, leading to a
more gram-positive-like susceptibility phenotype for deep-
rough mutants treated with hydrophobic antimicrobials
[9,16]. Although the LPS of Re chemotype mutants is truncated,
divalent cations still play a role in linking the remaining
adjacent LPS molecules not displaced by phospholipid patches.
The fact that treatment of the rough mutant with polyP or PEI
led to increased susceptibility of this strain to EOs reinforces

Figure 6. Zones of inhibition (mm) for six essential oils against S. enterica subsp. enterica ser. Minnesota R613 (“deep rough”, Re
chemotype), alone and in the presence of polyP (1%) or PEI (50 µg/ml). For each essential oil, treatments having the same letter are

not significantly different (p < 0.05).

Table 1. Summary of increases in zone size for test organisms
treated with 1% polyP or 50 µg/ml PEI.

Test organism

Increase in zone size, relative to control
(range of increase, in mm)
1% polyP 50 µg/ml PEI

P. aeruginosa 6–13 1–5
E. coli O157:H7 7–21 8–22
L. monocytogenes 8–23 9–24
S. aureus 4–9 2–6
S. Minnesota (wild type) 8–19 1–9
S. Minnesota (deep rough) 9–18 6–13

For each test organism, minimum and maximum increases in zone size
(mm) are listed as a function of the enhancer used.

H. A. Wright and B. F. Brehm-Stecher: Polyionic enhancers of essential oils SOR-LIFE
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the notion that chelation of structurally important metal cations

is the chief mode of action of these polyion enhancers against

gram-negative cells.

Work with EDTA and 1,10-o-phenanthroline has shown that

these compounds inhibit yeast growth by chelating the zinc

needed for normal cell wall biogenesis [35]. It is reasonable to
expect that polyP can also readily chelate zinc. In keeping with

this, the polyP preparation used here (BEKAPLUS FS) is
described in product literature as being fungistatic, a claim

that is also supported by our results for C. albicans. Both polyP

Figure 7. Zone of inhibition obtained for cinnamon oil against C. albicans ATCC 90028 treated with a subinhibitory level (5 µg/ml) PEI.

ZOI for cinnamon-only control (plate on left) was 40 mm. Treatment with 5 µg/ml PEI (plate on right) yielded a ZOI of 52 mm (12 mm

increase in zone size). These data show that susceptibility of C. albicans to EOs can be effectively enhanced using 10-fold less PEI than

found to be effective as an enhancer for bacteria.

Table 2. Fractional inhibitory concentration (FIC) indices and
interpretations (synergy or indifference) for E. coli O157:H7 ATCC
35150, L. monocytogenes F6854, and C. albicans ATCC 90028
treatedwith cinnamon oil or redistilled oregano oil, with or without
1% polyP.

Minimum inhibitory
concentration (% v/v oil)

FIC index
Control (EO alone) polyPa (Interpretationb)

E. coli O157:H7
Cinnamon oil 0.0313 0.0078 0.251 (S)
Redistilled
oregano oil

0.0625 0.0313 0.503 (I)

L. monocytogenes
Cinnamon oil 0.0625 0.0078 0.126 (S)
Redistilled
oregano oil

0.25 0.0313 0.128 (S)

C. albicans
Cinnamon oil 0.0156 0.0039 0.253 (S)
Redistilled
oregano oil

0.0625 0.0313 0.525 (I)

polyP alone exhibited the following MICs: >10% (E. coli and
L. monocytogenes) or 1.25% (C. albicans).
a1% polyP used for bacteria, 0.25% polyP used for C. albicans;
bS, synergy; I, indifference.

Table 3. Fractional inhibitory concentration (FIC) indices and
interpretations (synergy or indifference) for E. coli O157:H7
ATCC 35150 and L. monocytogenes F6854 treated with cinnamon
oil or redistilled oregano oil, with or without 50 µg/ml PEI.
PEI alone exhibited the following MICs: 100 µg/ml (E. coli and
L. monocytogenes) or <0.39 µg/ml (C. albicans).

Minimum inhibitory
concentration (% v/v oil)

Control
(EO alone) + 50 µg/ml PEI

FIC index
(Interpretationb)

E. coli O157:H7
Cinnamon oil 0.0313 0.0039 0.452 (S)
Redistilled
oregano Oil

0.0625 0.0156 1.810 (I)

L. monocytogenes
Cinnamon oil 0.0625 0.0078 0.842 (I)
Redistilled
oregano oil

0.25 0.0156 1.622 (I)

C. albicans
Cinnamon oil 0.0156 N/Da –
Redistilled
oregano oil

0.0625 N/Da –

aNot determined, as PEI alone was inhibitory to C. albicans at 50 µg/ml;
bS, synergy; I, indifference.
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and clove EO are also known to chelate iron [33,36]. Because
iron is an essential nutrient for microbial growth [37],
sequestration of iron by polyP/EO combinations may repres-
ent a secondary means for these mixtures to inhibit microbial
growth, beyond physical permeabilization.

Among the physiological effects that Burt [2] found for
carvacrol was that this component of thyme and oregano
EOs inhibits the formation of flagellin. Cells of E. coli O157:H7
exposed to 1 mM carvacrol were aflagellate and nonmotile [2].
Because bacterial flagella mediate attachment to both host
cells and inanimate surfaces, carvacrol may therefore interfere
with attachment of bacteria to host or environmental surfaces
[38]. Polyphosphates are also thought to promote detachment
of pre-biofilm salivary proteins to tooth enamel or bacteria to
food surfaces [39,40]. Combinations of polyP and EOs may
therefore have promise as inhibitors of bacterial attachment
through a combination of overt physiological effects on cells
and physical effects on the surfaces to which they are
attached.

In additional to their direct activities as antimicrobial enhan-
cers, functional ingredients such as polyP and PEI could
also exert important effects from a formulation perspective.
For antimicrobials to be effective in foods, they must be avail‐
able in the aqueous phase, which is problematic for hydro-
phobic compounds such as EOs [5]. The emulsifying properties
of polyP may therefore be beneficial in polyP/EO combinations,
as polyP could potentially function to promote or stabilize EO
emulsions, minimizing the negative effects of phase partitioning
on EO availability.

Finally, it is generally recognized that EOs are more effective
antimicrobials at acidic pH values, which may reflect their
increased solubility at lower pH or the presence of certain EO
components in higher concentration in their undissociated
form [2,4]. Ultee et al. [14] suggested that the undissociated
form of carvacrol may behave as a mobile proton/cation
exchanger, whose action diminishes the pH gradient across
the cell membrane. In our experiments, addition of polyP or
PEI did not affect the pH of the CAMBH medium used. CAMBH
containing polyP or PEI at final working concentrations
maintained neutral pH values between 7.1 and 7.3, close to
the manufacturer’s specifications of 7.3, ± 0.1. Because certain
phosphates are routinely used in the food industry as
acidulants, it would be interesting to use these to formulate
polyP-EO systems having acidic pH values and to investigate
the antimicrobial activities of these low-pH systems vis-à-vis
pH neutral systems. Alternatively, the final pH of such systems
could be adjusted using organic acids, which themselves may
have chelating activities [5,6].

In summary, we have shown that both polyP and PEI can be
effectively used at subinhibitory levels to enhance the anti-
microbial activities of select EOs against gram-negative bacteria
(E. coli O157:H7, S. Minnesota, P. aeruginosa), gram-positive
bacteria (L. monocytogenes and S. aureus), and a pathogenic
yeast (C. albicans). Enhancement for certain polyion/EO

combinations was measurably synergistic. Experiments with a

“deep-rough” mutant of S. Minnesota reinforced the role of the

OM in the intrinsic resistance of gram-negative bacteria to EOs.

The fact that polyP and PEI were able to further potentiate

the activities of EOs against the rough mutant suggests that

polyP and PEI target features still present in the rough mutant,

such as magnesium ions bridging adjacent LPS molecules. The

unique properties of polyP and PEI as functional ingredients

may confer additional benefits to polyion/EO systems by

facilitating bacterial detachment, interfering with the produc-

tion of infection-related virulence factors (i.e. pyocyanin) or

promoting emulsification and availability of EOs in the aqueous

phase of matrices in which these combinations are applied.

This work extends what is known about the antimicrobial-

sensitizing potential of both polyP and PEI for compounds other

than antibiotics or biocides and suggests a potential role for

these polyionic enhancers in effective multicomponent anti-

microbial mixtures for use in food, environmental, or medical

applications. Some combinations, such as polyP and certain

EOs also have the added benefit of being fully GRAS, which

may ultimately facilitate their use in foods or in food-related

applications, such as dips or sprays. Further work should be

done to determine the efficacy of such systems in foods, to

examine the capacity of EO/polyion combinations to address

antimicrobial-resistant clinical strains [10], and to address

more basic questions such as how pH or control of the emulsion

may affect the behavior of polyion/EO systems, with the

ultimate goal of developing systems having improved antimi-

crobial activities.
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